338 Database entries


Ratings:    13  votes
Please vote:   

OS: Linux, ....

License: Freeare, GPL

Methods: DFT

OpenMX (Open source package for Material eXplorer) is a software package for nano-scale material simulations based on density functional theories (DFT), norm-conserving pseudopotentials, and pseudo-atomic localized basis functions. Since the code is designed for the realization of large-scale ab initio calculations on parallel computers, it is anticipated that OpenMX can be a useful and powerful tool for nano-scale material sciences in a wide variety of systems such as bio-materials, carbon nanotubes, magnetic materials, and nanoscale conductors. Features and capabilities of OpenMX Ver. 3.5 are as follows:
Total energy and forces by cluster, band, and O(N) methods
Local density approximation (LDA, LSDA) and generalized gradient approximation (GGA) to the exchange-correlation potential
Norm-conserving pseudopotentials
Variationally optimized pseudo-atomic basis functions
Fully and scalar relativistic treatment within pseudopotential scheme
Non-collinear DFT
Constraint DFT for non-collinear spin and orbital orientation
Collinear LDA+U and non-collinear LDA+U methods
Macroscopic polarization by Berry's phase
Divide-conquer (DC) method, generalized DC method, and Krylov subspace method for O(N) eigenvalue solver
Simple, RMM-DIIS, GR-Pulay, Kerker, and RMM-DIIS with Kerker's metric charge mixing schemes
Exchange coupling parameter
Optical conductivity
Charge doping
Uniform electric field
Full and constrained geometry optimization
Electric transport calculation by a non-equilibrium Green's function method
Construction of maximally localized wannier functions
NVE ensemble molecular dynamics
NVT ensemble molecular dynamics by a velocity scaling and the Nose-Hoover methods [18]
Mulliken, Voronoi, and ESP fitting analysis of charge and spin densities
Analysis of wave functions and electron (spin) densities
Dispersion analysis by the band calculation
Density of states (DOS) and projected DOS
Flexible data format for the input
Completely dynamic memory allocation
Parallel execution by Message Passing Interface (MPI)
Parallel execution by OpenMP
Useful user interface for developers
Evaluation of two-center integrals using Fourier transformation
Evaluation of three-center integrals by a projector expansion method
Solution of Poisson's equation using FFT